
Click link below picture
.
The theory has long been touted as the best hope for a unified “theory of everything,” bringing together the physics of the vanishingly small and the mindbendingly large. But it has also been criticized and even ridiculed for failing to make any predictions that could be checked experimentally. It’s not just that we don’t have big enough particle accelerators or powerful enough computers; string theory’s most vocal critics charge that no experiment could even be imagined that would prove it right or wrong, making the whole theory effectively useless.
Now, physicists at Imperial College London and Stanford University have found a way to make string theory useful, not for a theory of everything, but for quantum entanglement.
“We can use string theory to solve problems in a different area of physics,” said theoretical physicist Michael Duff of Imperial College London. “In that context it’s actually useful: We can make statements which you could in principle check by experiment.” Duff and his colleagues describe their findings in a paper in Physical Review Letters September 2.
String theory suggests that matter can be broken down beyond electrons and quarks into tiny loops of vibrating strings. Those strings move and vibrate at different frequencies, giving particles distinctive properties like mass and charge. This strange idea could unite all the fundamental forces, explain the origins of fundamental particles and connect Einstein’s general relativity to quantum mechanics. But to do so, the theory requires six extra dimensions of space and time curled up inside the four that we’re used to.
.

.
.Click link below for article:
http://www.wired.com/wiredscience/2010/09/stringy-quantum/
.
_____________________________________________________